首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   2篇
航空   41篇
航天技术   55篇
综合类   1篇
航天   24篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   6篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   9篇
  2013年   7篇
  2012年   5篇
  2011年   12篇
  2010年   7篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   9篇
  2005年   1篇
  2004年   4篇
  2003年   5篇
  2001年   2篇
  2000年   2篇
  1996年   2篇
  1993年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1970年   1篇
  1968年   2篇
排序方式: 共有121条查询结果,搜索用时 703 毫秒
21.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100–200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases during the initial period of the COSMIC mission.  相似文献   
22.
Removing orbital debris with lasers   总被引:2,自引:0,他引:2  
Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.  相似文献   
23.
We use the 8-year long satellite temperature data (2002–2010) from Atmospheric InfraRed Sounder (AIRS) and Atmospheric Microwave Sounding Unit (AMSU) on the Aqua satellite to identify temperature trends in the troposphere and low stratosphere over the Niño 3.4 region of the Tropical Pacific Ocean in the most recent 11-year solar cycle. Employing more extended sea surface temperature (SST) data for five solar cycles (1950–2009) in this region we show that the satellite trends reflect a typical decrease of the sea surface temperature (SST) in the Niño 3.4 region in the declining phase of the solar cycle. The magnitude of the SST decrease depends on the solar cycle and ranges between 0.07 K/yr and 0.27 K/yr for the last five solar cycles.  相似文献   
24.
Registration of secondary cosmic ray neutrons is a convenient tool for investigation of primary cosmic ray variations and meteorological effects as well. At present a large network of neutron monitors exists, providing the studies of cosmic ray variations related to the interplanetary conditions and geomagnetic activity. At the same time cosmic ray variations may be caused by some atmospheric processes. In this connection, using the data from standard and lead-free neutron monitors, and gamma and muon detectors, we studied relations between rain flows and neutron, gamma and ionization component behavior. To explain observable results the calculations of neutron and gamma absorption and albedo neutron spectra have been performed on the basis of universal software package FLUKA-2006. In this study we used hourly data on the neutron flux, corrected for barometric pressure and data from local meteorological stations. It was shown that secondary neutron radiation, recorded by lead-free NM, and gamma radiation as well are strongly effected by meteorological factors. The neutron component behavior depends on the moisture content in the soil, and above its surface.  相似文献   
25.
Zonal velocity and temperature daily global reanalysis data of 30 years are used to search seasonally steady planetary disturbances in the middle troposphere (400 hPa) and middle stratosphere (10 hPa). Significant wavenumber 1, 2 and 3 modes are found. Constant phase lines of zonal velocity 1 modes exhibit significant inclination angles with respect to the meridians. The winter hemisphere generally shows a more significant presence of structures. The Northern Hemisphere (NH) exhibits all over the year a larger amount of structures and more intense amplitudes than the Southern Hemisphere (SH). Middle latitudes exhibit the most significant cases and low latitudes the least significant ones. Longitudinally oriented land–sea transitions at ±±65° and −35° latitudes appear to play a significant role for the presence of steady planetary modes. The stratosphere exhibits a much simpler picture than the troposphere. Large scale structures with respectively NE–SW (NH) and NW–SE (SH) tilts in the observed temperature and zonal velocity constant phase lines recall the quasi-stationary Rossby wave trains that favor the poleward transport of angular momentum.  相似文献   
26.
Coronal loops, which trace closed magnetic field lines, are the primary structural elements of the solar atmosphere. Complex dynamics of solar coronal magnetic loops, together with action of possible subphotospheric dynamo mechanisms, turn the majority of the coronal loops into current-carrying structures. In that connection none of the loops can be considered as isolated from the surroundings. The current-carrying loops moving relative to each other interact via the magnetic field and currents. One of the ways to take into account this interaction consists in application of the equivalent electric circuit models of coronal loops. According to these models, each loop is considered as an equivalent electric LCR-circuit with variable inductive coefficients L, capacitance C, and resistance R, which depend on shape, scale, position of the loop with respect to neighbouring loops, as well as on the plasma parameters in the magnetic tube. Such an approach enables to describe the process of electric current dynamics in the groups of coronal loops, as well as the related dynamical, energy release and radiation processes. In the present paper we describe the major principles of LCR-circuit models of coronal magnetic loops, and show their application for interpretation of the observed oscillatory phenomena in the loops and in the related radiation.  相似文献   
27.
Here we propose that the radioresistance (tolerance to ionizing radiation) observed in several terrestrial bacteria has a martian origin. Multiple inconsistencies with the current view of radioresistance as an accidental side effect of tolerance to desiccation are discussed. Experiments carried out 25 years ago were reproduced to demonstrate that "ordinary" bacteria can develop high radioresistance ability after multiple cycles of exposure to high radiation dosages followed by cycles of recovery of the bacterial population. We argue that "natural" cycles of this kind could have taken place only on the martian surface, and we hypothesize that Mars microorganisms could have developed radioresistance in just several million years' time and, subsequently, have undergone transfer to Earth by way of martian meteorites. Our mechanism implies multiple and frequent exchanges of biota between Mars and Earth.  相似文献   
28.
Future efforts towards Mars exploration should include a discussion about the effects that the strict application of Planetary Protection policies is having on the astrobiological exploration of Mars, which is resulting in a continued delay in the search for Martian life. As proactive steps in the path forward, here we propose advances in three areas. First, we suggest that a redefinition of Planetary Protection and Special Regions is required for the case of Mars. Particularly, we propose a definition for special places on Mars that we can get to in the next 10–20?years with rovers and landers, where try to address questions regarding whether there is present-day near-surface life on Mars or not, and crucially doing so before the arrival of manned missions. We propose to call those special places “Astrobiology Priority Exploration” regions (APEX regions). Second, we stress the need for the development of robotic tools for the characterization of complex organic compounds as unequivocal signs of life, and particularly new generations of complex organic chemistry and biosignature detection instruments, including advances in DNA sequencing. And third, we advocate for a change from the present generation of SUV-sized landers and rovers to new robotic assets that are much easier to decontaminate such as microlanders: they would be very small with limited sensing capabilities, but there would be many of them available for launch and coordination from an orbiting platform. Implementing these changes will help to move forward with an exploration approach that is much less risky to the potential Mars biosphere, while also being much more scientifically rigorous about the exploration of the “life on Mars” question – a question that needs to be answered both for astrobiological discovery and for learning more definitive lessons on Planetary Protection.  相似文献   
29.
开发了用于科氏振动陀螺的在线自测试方法.该方法通过一种用于电容传感器的微机械陀螺数字读出电路实现.在微机械结构上施加一些额外的信号,传感器的最终性能(<0.1°/s)不会恶化.自测试的目标是验证科氏振动陀螺的第一和第二模态运动是否正常.对比其他的方法,该方法不会使器件性能退化,且可在运行的任何时间进行测试而不会干扰正常操作.该方法使微机械陀螺的性能得到提高,保证了传感器的正常功能.而在传感器非正常工作时可生成错误信号.  相似文献   
30.
During the past ten years the French laboratories working in the field of fluids and material sciences had access to regular, long-lasting manned missions onboard the Russian MIR Space Station. Beyond the French scientific program that was performed with the ALICE apparatus, a cooperative research program was developed with DLR, NASA and RSA. This cooperation was based on bartered agreements that included the joint utilization of the instruments onboard the MIR station (ALICE, TITUS furnace from DLR, vibration device from RKK Energia) and the funding of dedicated cartridges (DLR) or thermostats (DLR and NASA), as well as launch services (NASA) by the Cooperating Agencies. We present a review of this program with a particular emphasis on its scientific results and on the progress that has been achieved in science and applications. They covered a large field of condensed matter physics, from material sciences to near-critical and off-critical phase separation kinetics and near critical fluid hydrodynamics (thermoacoustic heat transport and vibrational convection). The high microgravity relevance of all these investigations naturally led to outstanding results that was published in the world's best scientific journals. The analysis of the latest experiments performed during the PEGASUS mission shows they will not be an exception to that evaluation. Off-critical phase separation with NASA, pressure-driven piston effect and equiaxed solidification with DLR, heat transport under calibrated vibrations with RKK Energia, all will be presented. The conclusion will stress the international character of this microgravity research program, the conditions of its success and what can be gained from it in the perspective of the space station utilization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号